Shrinkage methods for instrumental variable estimation∗

نویسنده

  • Ryo Okui
چکیده

This paper proposes shrinkage methods for instrumental variable estimation to solve the “many instruments” problem. Even though using a large number of instruments reduces the asymptotic variances of the estimators, it has been observed both in theoretical works and in practice that in finite samples the estimators may behave very poorly if the number of instruments is large. This problem can be addressed by shrinking the influence of a subset of instrumental variables. That is, we reconstruct the estimating equation of an instrumental variable estimator, which is a weighted sum of sample moment conditions, by shrinking some elements of the weighting vector. This procedure can also be understood by a two-step process of shrinking some of the OLS coefficient estimates from the regression of the endogenous variables on the instruments then using the predicted values of the endogenous variables based on the shrunk coefficient estimates as the instruments. The shrinkage parameter is chosen to minimize the asymptotic MSE. We find that the optimal shrinkage parameter has a closed form which leads to easy implementation. The Monte Carlo result shows that the shrinkage methods work well and moreover perform better than the instrument selection procedure in Donald and Newey (2001) in several situations relevant to applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of James–Stein Shrinkage (II): Bias Reduction in Instrumental Variable Estimation

In a two-stage linear regression model with Normal noise, I consider James–Stein type shrinkage in the estimation of the first-stage instrumental variable coefficients. For at least four instrumental variables and a single endogenous regressor, I show that the standard two-stage least-squares estimator is dominated with respect to bias. I construct the dominating estimator by a variant of James...

متن کامل

A Shrinkage Instrumental Variable Estimator for Large Datasets

This paper proposes and discusses an instrumental variable estimator that can be of particular relevance when many instruments are available. Intuition and recent work (see, e.g., Hahn (2002)) suggest that parsimonious devices used in the construction of the final instruments, may provide effective estimation strategies. Shrinkage is a well known approach that promotes parsimony. We consider a ...

متن کامل

Bias Reduction in Instrumental Variable Estimation through First-Stage Shrinkage

The two-stage least-squares (2SLS) estimator is known to be biased when its first-stage fit is poor. I show that better first-stage prediction can alleviate this bias. In a two-stage linear regression model with Normal noise, I consider shrinkage in the estimation of the first-stage instrumental variable coefficients. For at least four instrumental variables and a single endogenous regressor, I...

متن کامل

Shrinkage estimation and variable selection in multiple regression models with random coefficient autoregressive errors

In this paper, we consider improved estimation strategies for the parameter vector in multiple regression models with first-order random coefficient autoregressive errors (RCAR(1)). We propose a shrinkage estimation strategy and implement variable selection methods such as lasso and adaptive lasso strategies. The simulation results reveal that the shrinkage estimators perform better than both l...

متن کامل

Shrinkage Priors for Linear Instrumental Variable Models with Many Instruments

This paper addresses the weak instruments problem in linear instrumental variable models from a Bayesian perspective. The new approach has two components. First, a novel predictor-dependent shrinkage prior is developed for the many instruments setting. The prior is constructed based on a factor model decomposition of the matrix of observed instruments, allowing many instruments to be incorporat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004